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WHY I WROTE THIS BOOK

Students who perform poorly on organic chemistry exams often 
report having invested countless hours studying. Why do many 
students have difculty preparing themselves for organic chem-
istry exams? Certainly, there are several contributing factors, 
including inefcient study habits, but perhaps the most domi-
nant factor is a fundamental disconnect between what students 
learn in the lecture hall and the tasks expected of them during 
an exam. To illustrate the disconnect, consider the following 
analogy. 

Imagine that a prestigious university ofers a course entitled 
“Bike-Riding 101.” Troughout the course, physics and engineer-
ing professors explain many concepts and principles (for example, 
how bicycles have been engineered to minimize air resistance). 
Students invest signifcant time studying the information that was 
presented, and on the last day of the course, the fnal exam consists 
of riding a bike for a distance of 100 feet. A few students may 
have innate talents and can accomplish the task without falling. 
But most students will fall several times, slowly making it to the 
fnish line, bruised and hurt; and many students will not be able to 
ride for even one second without falling. Why? Because there is a 
disconnect between what the students learned and what they were 
expected to do for their exam. 

Many years ago, I noticed that a similar disconnect exists in 
traditional organic chemistry instruction. Tat is, learning organic 
chemistry is much like bicycle riding; just as the students in the 
bike-riding analogy were expected to ride a bike after attending lec-
tures, it is often expected that organic chemistry students will inde-
pendently develop the necessary skills for solving problems. While 
a few students have innate talents and are able to develop the nec-
essary skills independently, most students require guidance. Tis 
guidance was not consistently integrated within existing textbooks, 
prompting me to write the frst edition of my textbook, Organic 
Chemistry. Te main goal of my text was to employ a skills-based 
approach to bridge the gap between theory (concepts) and prac-
tice (problem-solving skills). Te second edition further supported 
this goal by introducing hundreds of additional problems based 
on the chemical literature, thereby exposing students to exciting 
real-world examples of chemical research being conducted in real 
laboratories. Te phenomenal success of the frst two editions has 
been extremely gratifying because it provided strong evidence that 
my skills-based approach is indeed efective at bridging the gap 
described above. 

I frmly believe that the scientifc discipline of organic chem-
istry is NOT merely a compilation of principles, but rather, it is 
a disciplined method of thought and analysis. Students must cer-
tainly understand the concepts and principles, but more impor-
tantly, students must learn to think like organic chemists . . . that 
is, they must learn to become profcient at approaching new situa-
tions methodically, based on a repertoire of skills. Tat is the true 
essence of organic chemistry.

A SKILLS-BASED APPROACH

To address the disconnect in organic chemistry instruction, I have 
developed a skills-based approach to instruction. Te textbook 
includes all of the concepts typically covered in an organic chem-
istry textbook, complete with conceptual checkpoints that promote 
mastery of the concepts, but special emphasis is placed on skills 
development through SkillBuilders to support these concepts. 
Each SkillBuilder contains three parts:

Learn the Skill: contains a solved problem that demonstrates a 
particular skill.

Practice the Skill: includes numerous problems (similar to the 
solved problem in Learn the Skill) that give students valuable 
opportunities to practice and master the skill.

Apply the Skill: contains one or two more problems in which 
the student must apply the skill to solve real-world problems (as 
reported in the chemical literature). Tese problems include con-
ceptual, cumulative, and applied problems that encourage students 
to think outside of the box. Sometimes problems that foreshadow 
concepts introduced in later chapters are also included.

At the end of each SkillBuilder, a Need More Practice? refer-
ence suggests end-of-chapter problems that students can work to 
practice the skill.

Tis emphasis upon skills development provides students with 
a greater opportunity to develop profciency in the key skills neces-
sary to succeed in organic chemistry. Certainly, not all necessary 
skills can be covered in a textbook. However, there are certain skills 
that are fundamental to all other skills.

As an example, resonance structures are used repeatedly 
throughout the course, and students must become masters of reso-
nance structures early in the course. Terefore, a signifcant por-
tion of Chapter 2 is devoted to pattern-recognition for drawing 
resonance structures. Rather than just providing a list of rules and 
then a few follow-up problems, the skills-based approach provides 
students with a series of skills, each of which must be mastered in 
sequence. Each skill is reinforced with numerous practice prob-
lems. Te sequence of skills is designed to foster and develop prof-
ciency in drawing resonance structures.

Te skills-based approach to organic chemistry instruction 
is a unique approach. Certainly, other textbooks contain tips for 
problem solving, but no other textbook consistently presents skills 
development as the primary vehicle for instruction.

WHAT’S NEW IN THIS EDITION

Peer review played a very strong role in the development of the 
frst and second editions of Organic Chemistry. Specifcally, the frst 
edition manuscript was reviewed by nearly 500 professors and over 
5,000 students, and the second edition manuscript was based on 
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comments received from 300 professors and 900 students. In pre-
paring the third edition, peer review has played an equally promi-
nent role. We have received a tremendous amount of input from 
the market, including surveys, class tests, diary reviews, and phone 
interviews. All of this input has been carefully culled and has been 
instrumental in identifying the focus of the third edition.

New Features in the Third Edition 
•	 A new chapter on organometallic reactions covers modern syn-

thetic techniques, including Stille coupling, Suzuki coupling, 
Negishi coupling, the Heck reaction, and alkene metathesis. 

•	 Substitution and elimination reactions have been combined 
into one chapter. Tis chapter (Chapter 7) also features a 
new section covering the preparation and reactions of alkyl 
tosylates, as well as a new section covering kinetic isotope 
efects. In addition, a new section introducing retrosynthesis 
has been added to the end of the chapter, so that synthesis 
and retrosynthesis are now introduced much earlier.

•	 For most SkillBuilders throughout the text, the Apply the 
Skill problem(s) have been replaced with moderate-level, 
literature-based problems. Tere are at least 150 of these 
new problems, which will expose students to exciting real-
world examples of chemical research being conducted in 
real laboratories. Students will see that organic chemistry is 
a vibrant feld of study, with endless possibilities for explora-
tion and research that can beneft the world in concrete ways.  

•	 Troughout the text, the distribution of problems has been 
improved by reducing the number of easy problems, and 
increasing the number of moderate-level, literature-based 
problems.

•	 Each chapter now includes a problem set that mimics the 
style of the ACS Organic Chemistry Exam.

•	 Te section covering oxidation of alcohols (in Chapter 12, 
and then again in Chapter 19) has been enhanced to include 
modern oxidation methods, such as Swern and DMP-based 
oxidations.

•	 Coverage of Wittig reactions has been updated to include 
stereochemical outcomes and the Horner–Wadsworth–
Emmons variation.

•	 Section 2.11 has been revised (Assessing the relative impor-
tance of resonance structures). Te rules have been com-
pletely rewritten to focus on the importance of octets and 
locations of charges. Te improved rules will provide stu-
dents with a deeper conceptual understanding. 

•	 In Chapter 2, a new section covers the skills necessary for 
drawing a resonance hybrid. 

•	 At the end of Chapter 5 (Stereoisomerism), a new section 
introduces chiral compounds that lack chiral centers, includ-
ing chiral allenes and chiral biphenyls.

•	 A new section in Chapter 11 (Synthesis) introduces “green 
chemistry” (atom economy, toxicology issues, etc.). 

•	 Coverage of E-Z nomenclature has been moved earlier. It 
now appears in Chapter 5, which covers stereoisomerism.

TEXT ORGANIZATION

Te sequence of chapters and topics in Organic Chemistry, 3e does 
not difer markedly from that of other organic chemistry textbooks. 
Indeed, the topics are presented in the traditional order, based on 
functional groups (alkenes, alkynes, alcohols, ethers, aldehydes and 
ketones, carboxylic acid derivatives, etc.). Despite this traditional 
order, a strong emphasis is placed on mechanisms, with a focus on 
pattern recognition to illustrate the similarities between reactions 
that would otherwise appear unrelated. No shortcuts were taken in 
any of the mechanisms, and all steps are clearly illustrated, includ-
ing all proton transfer steps.

Two chapters (6 and 11) are devoted almost entirely to 
skill development and are generally not found in other text-
books. Chapter 6, Chemical Reactivity and Mechanisms, empha-
sizes skills that are necessary for drawing mechanisms, while 
Chapter 11, Synthesis, prepares the students for proposing syn-
theses. Tese two chapters are strategically positioned within 
the traditional order described above and can be assigned to the 
students for independent study. Tat is, these two chapters do 
not need to be covered during precious lecture hours, but can 
be, if so desired.

Te traditional order allows instructors to adopt the skills-
based approach without having to change their lecture notes or 
methods. For this reason, the spectroscopy chapters (Chapters 
14 and 15) were written to be stand-alone and portable, so that 
instructors can cover these chapters in any order desired. In fact, 
fve of the chapters (Chapters 2, 3, 7, 12, and 13) that precede 
the spectroscopy chapters include end-of-chapter spectroscopy 
problems, for those students who covered spectroscopy earlier. 
Spectroscopy coverage also appears in subsequent functional 
group chapters, specifcally Chapter 17 (Aromatic Compounds), 
Chapter 19 (Aldehydes and Ketones), Chapter 20 (Carboxylic 
Acids and Teir Derivatives), Chapter 22 (Amines), Chapter 24 
(Carbohydrates), and Chapter 25 (Amino Acids, Peptides, and 
Proteins).

THE WileyPLUS ADVANTAGE

WileyPLUS is a research-based online environment for efective 
teaching and learning. WileyPLUS is packed with interactive study 
tools and resources, including the complete online textbook. 

New to WileyPLUS for Organic Chemistry, 3e 
WileyPLUS for Organic Chemistry, 3e highlights David Klein’s 
innovative pedagogy and teaching style:

•	NEW Author-created question assignments
•	NEW solved problem videos by David Klein for all new 

Apply the Skill Problems
•	NEW Author-curated course includes reading materials, 

embedded resources, practice, and problems that have been 
chosen specifcally by the author

•	NEW embedded Interactive exercises: over 300 inter-
active exercises designed to engage students with the content



WileyPLUS for Organic Chemistry, 3e is now supported by an 
adaptive learning module called ORION. Based on cognitive sci-
ence, ORION provides students with a personal, adaptive learning 
experience so they can build profciency in concepts and use their 
study time efectively. WileyPLUS with ORION helps students 
learn by learning about them.

WileyPLUS with ORION is great as:
•	 An adaptive pre-lecture tool that assesses your students’ con-

ceptual knowledge so they come to class better prepared.
•	 A personalized study guide that helps students understand 

both strengths and areas where they need to invest more time, 
especially in preparation for quizzes and exams. 

ADDITIONAL INSTRUCTOR 
RESOURCES

Testbank Prepared by Christine Hermann, Radford University.
PowerPoint Lecture Slides with Answer Slides Prepared by 
Adam Keller, Columbus State Community College.
PowerPoint Art Slides Prepared by Kevin Minbiole, Villanova 
University.
Personal Response System (“Clicker”) Questions Prepared 
by Dalila Kovacs, Grand Valley State University and Randy 
Winchester, Grand Valley State University.

STUDENT RESOURCES

Student Study Guide and Solutions Manual (ISBN 
9781118700815) Authored by David Klein. Te third edition 
of the Student Study Guide and Solutions Manual to accompany 
Organic Chemistry, 3e contains:
•	 More detailed explanations within the solutions for every 

problem.

•	 Concept Review Exercises
•	 SkillBuilder Review Exercises
•	 Reaction Review Exercises
•	 A list of new reagents for each chapter, with a description of 

their function.
•	 A list of “Common Mistakes to Avoid” in every chapter.

Molecular Visions™ Model Kit To support the learning of 
organic chemistry concepts and allow students the tactile experi-
ence of manipulating physical models, we ofer a molecular model-
ing kit from the Darling Company. Te model kit can be bundled 
with the textbook or purchased stand alone.

CONTRIBUTORS TO ORGANIC 
CHEMISTRY, 3E

I owe special thanks to my contributors for their collaboration, 
hard work, and creativity. Many of the new, literature-based, 
SkillBuilder problems were written by Laurie Starkey, California 
State Polytechnic University, Pomona; Tifany Gierasch, University 
of Maryland, Baltimore County, Seth Elsheimer, University of 
Central Florida; and James Mackay, Elizabethtown College. Sections 
2.11 and 19.10 were rewritten by Laurie Starkey, and Section 
2.12 was written by Tifany Gierasch. Many of the new Medically 
Speaking and Practically Speaking applications throughout the 
text were written by Ron Swisher, Oregon Institute of Technology. 
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A Review of  
General Chemistry
ELECTRONS, BONDS, AND MOLECULAR PROPERTIES

DId YOU EVEr WONDER . . .
what causes lightning?

Believe it or not, the answer to this question is still the sub-
ject of debate (that’s right … scientists have not yet fgured out 

everything, contrary to popular belief  ). Tere are various theories 
that attempt to explain what causes the buildup of electric charge in 
clouds. One thing is clear, though—lightning involves a fow of elec-
trons. By studying the nature of electrons and how electrons fow, it 
is possible to control where lightning will strike. A tall building can 
be protected by installing a lightning rod (a tall metal column at the 
top of the building) that attracts any nearby lightning bolt, thereby 
preventing a direct strike on the building itself. Te lightning rod on 
the top of the Empire State Building is struck over a hundred times 
each year.

Just as scientists have discovered how to direct electrons in a 
bolt of lightning, chemists have also discovered how to direct elec-
trons in chemical reactions. We will soon see that 
although organic chemistry is literally defned 
as the study of compounds contain-
ing carbon atoms, its true essence 
is actually the study of electrons, 
not atoms. Rather than thinking 
of reactions in terms of the motion 
of atoms, we must recognize that  

1

continued >
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reactions occur as a result of the motion of electrons. For example, in the following reaction the 
curved arrows represent the motion, or fow, of electrons. Tis fow of electrons causes the 
chemical change shown:

⊝⊝
HO CH

H

H

C HHO

H

H

++

Troughout this course, we will learn how, when, and why electrons fow during 
reactions. We will learn about the barriers that prevent electrons from fowing, and 
we will learn how to overcome those barriers. In short, we will study the behavioral 
patterns of electrons, enabling us to predict, and even control, the outcomes of chemical 
reactions.

Tis chapter reviews some relevant concepts from your general chemistry course that 
should be familiar to you. Specifcally, we will focus on the central role of electrons in form-
ing bonds and infuencing molecular properties.

1.1  Introduction to Organic Chemistry

In the early nineteenth century, scientists classifed all known compounds into two categories: Organic 
compounds were derived from living organisms (plants and animals), while inorganic compounds were 
derived from nonliving sources (minerals and gases). Tis distinction was fueled by the observation 
that organic compounds seemed to possess diferent properties than inorganic compounds. Organic 
compounds were often difcult to isolate and purify, and upon heating, they decomposed more read-
ily than inorganic compounds. To explain these curious observations, many scientists subscribed to 
a belief that compounds obtained from living sources possessed a special “vital force” that inorganic 
compounds lacked. Tis notion, called vitalism, stipulated that it should be impossible to convert 
inorganic compounds into organic compounds without the introduction of an outside vital force. 
Vitalism was dealt a serious blow in 1828 when German chemist Friedrich Wöhler demonstrated the 
conversion of ammonium cyanate (a known inorganic salt) into urea, a known organic compound 
found in urine:

Heat

Ammonium cyanate
(Inorganic)

NH4OCN C

O

Urea
(Organic)

H2N NH2

Over the decades that followed, other examples were found, and the concept of vitalism was 
gradually rejected. Te downfall of vitalism shattered the original distinction between organic and 
inorganic compounds, and a new defnition emerged. Specifcally, organic compounds became 
defned as those compounds containing carbon atoms, while inorganic compounds generally were 
defned as those compounds lacking carbon atoms.

Organic chemistry occupies a central role in the world around us, as we are surrounded by 
organic compounds. Te food that we eat and the clothes that we wear are comprised of organic 
compounds. Our ability to smell odors or see colors results from the behavior of organic compounds. 
Pharmaceuticals, pesticides, paints, adhesives, and plastics are all made from organic compounds. In 
fact, our bodies are constructed mostly from organic compounds (DNA, RNA, proteins, etc.) whose 
behavior and function are determined by the guiding principles of organic chemistry. Te responses 
of our bodies to pharmaceuticals are the results of reactions guided by the principles of organic 
chemistry. A deep understanding of those principles enables the design of new drugs that fght disease 
and improve the overall quality of life and longevity. Accordingly, it is not surprising that organic 
chemistry is required knowledge for anyone entering the health professions.

BY THE WAY
There are some 
carbon‑containing 
compounds that are 
traditionally excluded 
from organic classifcation. 
For example, ammonium 
cyanate (seen on this 
page) is still classifed as 
inorganic, despite the 
presence of a carbon 
atom. Other exceptions 
include sodium carbonate 
(Na2CO3) and potassium 
cyanide (KCN), both of 
which are also considered 
to be inorganic compounds. 
We will not encounter 
many more exceptions.
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1.2  The Structural Theory of Matter

In the mid-nineteenth century three individuals, working independently, laid the conceptual foun-
dations for the structural theory of matter. August Kekulé, Archibald Scott Couper, and Alexander 
M. Butlerov each suggested that substances are defned by a specifc arrangement of atoms. As an 
example, consider the following two compounds:

H C

H

H

O C

H

H

H

Dimethyl ether
Boiling point = –23°C

H C

H

H

C O

H

H

H

Ethanol
Boiling point = 78.4°C

Tese compounds have the same molecular formula (C2H6O), yet they difer from each other 
in the way the atoms are connected—that is, they difer in their constitution. As a result, they 
are called constitutional isomers. Constitutional isomers have diferent physical properties and 
diferent names. Te frst compound is a colorless gas used as an aerosol spray propellant, while 
the second compound is a clear liquid, commonly referred to as “alcohol,” found in alcoholic 
beverages.

According to the structural theory of matter, each element will generally form a predictable 
number of bonds. For example, carbon generally forms four bonds and is therefore said to be 
tetravalent. Nitrogen generally forms three bonds and is therefore trivalent. Oxygen forms two 
bonds and is divalent, while hydrogen and the halogens form one bond and are monovalent 
(Figure 1.1).

Tetravalent Trivalent Divalent Monovalent

C N

Carbon generally
forms four bonds.

Nitrogen generally
forms three bonds.

O

Oxygen generally
forms two bonds.

H X

Hydrogen and halogens
generally form one bond.

(where X = F, Cl, Br, or   )FIGUre 1.1
Valencies of some common 
elements encountered 
in organic chemistry.

SKILLBUILDER

LEARN the skill

1.1  DRAWING CONSTITUTIONAL ISOMERS OF SMALL MOLECULES

Draw all constitutional isomers that have the molecular formula C3H8O.

SOlUtIOn
Begin by determining the valency of each atom that appears in the molecular formula. 
Carbon is tetravalent, hydrogen is monovalent, and oxygen is divalent. The atoms with the 
highest valency are connected frst. So, in this case, we draw our frst isomer by connecting 
the three carbon atoms, as well as the oxygen atom, as shown below. The drawing is com‑
pleted when the monovalent atoms (H) are placed at the periphery:

C C C O H C

H

H

C

H

H

C

H

H

O HC C C O

STEP 1
Determine the valency of 

each atom that appears 
in the molecular formula.

STEP 2
Connect the atoms of 

highest valency, and 
place the monovalent 

atoms at the periphery.
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1.3  Electrons, Bonds, and Lewis Structures

What Are Bonds?
As mentioned, atoms are connected to each other by bonds. Tat is, bonds are the “glue” that hold 
atoms together. But what is this mysterious glue and how does it work? In order to answer this ques-
tion, we must focus our attention on electrons.

Te existence of the electron was frst proposed in 1874 by George Johnstone Stoney (National 
University of Ireland), who attempted to explain electrochemistry by suggesting the existence 

This isomer (called 1-propanol) can be drawn in many different ways, some of which are 
shown here:

H C

H

H

C

H

H

C

O

H

H H C

H

H

C

H

H

C

H

H

O H H C

H

H

C

H

H

C

H

O

H

H

H

1-Propanol 1-Propanol 1-Propanol

HC

H

H

C

H

H

C

H

H

OH

1-Propanol

123 123 123 321

All of these drawings represent the same isomer. If we number the carbon atoms (C1, C2, 
and C3), with C1 being the carbon atom connected to oxygen, then all of the drawings 
above show the same connectivity: a three-carbon chain with an oxygen atom attached at 
one end of the chain.

Thus far, we have drawn just one isomer that has the molecular formula C3H8O. Other 
constitutional isomers can be drawn if we consider other possible ways of connecting the three 
carbon atoms and the oxygen atom. For example, the oxygen atom can be connected to C2 
(rather than C1), giving a compound called 2-propanol (shown below). Alternatively, the oxy‑
gen atom can be inserted between two carbon atoms, giving a compound called ethyl methyl 
ether (also shown below). For each isomer, two of the many acceptable drawings are shown:

H C

H

H

C

H

H

O C H

H

H

HC

H

H

C

H

H

OCH

H

H

Ethyl methyl ether

H C

H

H

C

O

H

C

H

H

H

H

H C

H

H

C

H

C

O

2-Propanol

321

H

HH

H

3

21

If we continue to search for alternate ways of connecting the three carbon atoms and the 
oxygen atom, we will not fnd any other ways of connecting them. So in summary, there are 
a total of three constitutional isomers with the molecular formula C3H8O, shown here:

H C

H

H

C

H

H

C

H

H

O H H C

H

H

C

O

H

C

H

H

H

H

H C

H

H

C

H

H

O C H

H

H

Oxygen is connected to C1 Oxygen is connected to C2 Oxygen is between two carbon atoms

Additional skills (not yet discussed) are required to draw constitutional isomers of com‑
pounds containing a ring, a double bond, or a triple bond. Those skills will be developed in 
Section 14.16.

1.1  Draw all constitutional isomers with the following molecular formula.

(a)	C3H7Cl	 (b)	C4H10	 (c)	C5H12	 (d)	 C4H10O	 (e)	C3H6Cl2

1.2  Chlorofuorocarbons (CFCs) are gases that were once widely used as refrigerants and 
propellants. When it was discovered that these molecules contributed to the depletion of 
the ozone layer, their use was banned, but CFCs continue to be detected as contaminants 
in the environment.1 Draw all of the constitutional isomers of CFCs that have the molecular 
formula C2Cl3F3.

Try Problems 1.35, 1.46, 1.47, 1.54

PractIce the skill

ApplY the skill

need more PRACTICE?

STEP 3
Consider other ways to 

connect the atoms.
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of a particle bearing a unit of charge. Stoney coined the term electron to describe this particle.  
In 1897, J. J. Tomson (Cambridge University) demonstrated evidence supporting the existence of 
Stoney’s mysterious electron and is credited with discovering the electron. In 1916, Gilbert Lewis 
(University of California, Berkeley) defned a covalent bond as the result of two atoms sharing a pair 
of electrons. As a simple example, consider the formation of a bond between two hydrogen atoms:

△H = –436 kJ/molH+H H H

Each hydrogen atom has one electron. When these electrons are shared to form a bond, there is a 
decrease in energy, indicated by the negative value of ΔH. Te energy diagram in Figure 1.2 plots 

the energy of the two hydrogen atoms as a function of the distance between them. Focus on 
the right side of the diagram, which represents the hydrogen atoms separated 

by a large distance. Moving toward the left on the diagram, the hydrogen 
atoms approach each other, and there are several forces that must 

be taken into account: (1) the force of repulsion between the two 
negatively charged electrons, (2) the force of repulsion between 

the two positively charged nuclei, and (3) the forces of attraction 
between the positively charged nuclei and the negatively charged elec-

trons. As the hydrogen atoms get closer to each other, all of these forces get 
stronger. Under these circumstances, the electrons are capable of moving in such 

a way so as to minimize the repulsive forces between them while maximizing their attrac-
tive forces with the nuclei. Tis provides for a net force of attraction, which lowers the energy of 
the system. As the hydrogen atoms move still closer together, the energy continues to be lowered 
until the nuclei achieve a separation (internuclear distance) of 0.74 angstroms (Å). At that point, 
the force of repulsion between the nuclei begins to overwhelm the forces of attraction, causing 
the energy of the system to increase if the atoms are brought any closer together. Te lowest point 
on the curve represents the lowest energy (most stable) state. Tis state determines both the bond 
length (0.74 Å) and the bond strength (436 kJ/mol).

Drawing the Lewis Structure of an Atom
Armed with the idea that a bond represents a pair of shared electrons, Lewis then devised a method 
for drawing structures. In his drawings, called Lewis structures, the electrons take center stage. We 
will begin by drawing individual atoms, and then we will draw Lewis structures for small molecules. 
First, we must review a few simple features of atomic structure:

•	 The nucleus of an atom is comprised of protons and neutrons. Each proton has a charge of 
+1, and each neutron is electrically neutral.

•	 For a neutral atom, the number of protons is balanced by an equal number of electrons, 
which have a charge of −1 and exist in shells. Te frst shell, which is closest to the nucleus, 
can contain two electrons, and the second shell can contain up to eight electrons.

•	 The electrons in the outermost shell of an atom are called the valence electrons. The number of 
valence electrons in an atom is identifed by its group number in the periodic table (Figure 1.3).

BY THE WAY
1 Å = 10−10 meters.

FIGUre 1.3
A periodic table showing 
group numbers.

Transition
Metal

Elements

1A 8A

2A 3A 4A 5A 6A 7AH

Li Be

Na Mg

K Ca

Rb Sr

Cs Ba

B C

Al Si

Ga Ge

n Sn

Tl Pb

N O

P S

As Se

Sb Te

Bi Po

F Ne

He

Cl Ar

Br Kr

Xe

At Rn

Internuclear distance0.74 Å

–436 kJ/mol

0

Energy

H H

H H

H H

H H
H H+

FIGUre 1.2
An energy diagram showing 
the energy as a function of the 
internuclear distance between 
two hydrogen atoms.

Te Lewis dot structure of an individual atom indicates the number of valence electrons, which 
are placed as dots around the periodic symbol of the atom (C for carbon, O for oxygen, etc.). Te 
placement of these dots is illustrated in the following SkillBuilder.
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Drawing the Lewis Structure of a Small Molecule
Te Lewis dot structures of individual atoms are combined to 
produce Lewis dot structures of small molecules. Tese drawings 
are constructed based on the observation that atoms tend to bond 
in such a way so as to achieve the electron confguration of a 
noble gas. For example, hydrogen will form one bond to achieve 
the electron confguration of helium (two valence electrons), while second-row elements (C, N, O, 
and F) will form the necessary number of bonds so as to achieve the electron confguration of neon 
(eight valence electrons).

C H

H

H

H

CH H
H

H

STEP 1
Determine the number 

of valence electrons.

STEP 2
Place one valence 

electron by itself on each 
side of the atom.

STEP 3
If the atom has more 

than four valence 
electrons, the remaining 
electrons are paired with 

the electrons already 
drawn.

PractIce the skill

ApplY the skill

SKILLBUILDER

LEARN the skill

1.2  DRAWING THE LEWIS DOT STRUCTURE OF AN ATOM

Draw the Lewis dot structure of (a) a boron atom and (b) a nitrogen atom.

SOlUtIOn
(a)	� In a Lewis dot structure, only valence electrons are drawn, so we must frst determine 

the number of valence electrons. Boron belongs to group 3A on the periodic table, and 
it therefore has three valence electrons. The periodic symbol for boron (B) is drawn, and 
each electron is placed by itself (unpaired) around the B, like this:

B

(b)	� Nitrogen belongs to group 5A on the periodic table, and it therefore has fve valence 
electrons. The periodic symbol for nitrogen (N) is drawn, and each electron is placed by 
itself (unpaired) on a side of the N until all four sides are occupied:

N

	� Any remaining electrons must be paired up with the electrons already drawn. In the case 
of nitrogen, there is only one more electron to place, so we pair it up with one of the four 
unpaired electrons (it doesn’t matter which one we choose):

N

1.3  Draw a Lewis dot structure for each of the following atoms:

(a)	Carbon	 (b)	 Oxygen	 (c)	 Fluorine	 (d)	 Hydrogen

(e)	Bromine	 (f )	 Sulfur	 (g)	 Chlorine	 (h)	 Iodine

1.4  Compare the Lewis dot structure of nitrogen and phosphorus and explain why you 
might expect these two atoms to exhibit similar bonding properties.

1.5  Name one element that you would expect to exhibit bonding properties similar to 
boron. Explain.

1.6  Draw a Lewis structure of a carbon atom that is missing one valence electron (and 
therefore bears a positive charge). Which second-row element does this carbon atom resem‑
ble in terms of the number of valence electrons?

1.7  Lithium salts have been used for decades to treat mental illnesses, including depres‑
sion and bipolar disorder.  Although the treatment is effective, researchers are still trying to 
determine how lithium salts behave as mood stabilizers.2

(a)	Draw a Lewis structure of an uncharged lithium atom, Li.

(b)	Lithium salts contain a lithium atom that is missing one valence electron (and therefore 
bears a positive charge). Draw a Lewis structure of the lithium cation.
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Draw the Lewis structure of CH2O.

SOlUtIOn
There are four discrete steps when drawing a Lewis structure: First determine the number of 
valence electrons for each atom.

H HC O

Then, connect any atoms that form more than one bond. Hydrogen atoms only form 
one bond each, so we will save those for last. In this case, we connect the C and the O.

OC

Next, connect all hydrogen atoms. We place the hydrogen atoms next to carbon, 
because carbon has more unpaired electrons than oxygen.

H
OH C

Finally, check to see if each atom (except hydrogen) has an octet. In fact, neither the carbon 
nor the oxygen has an octet, so in a situation like this, the unpaired electrons are shared as 
a double bond between carbon and oxygen.

H
OH C

H
OH C

Now all atoms have achieved an octet. When drawing Lewis structures, remember that 
you cannot simply add more electrons to the drawing. For each atom to achieve an octet, 
the existing electrons must be shared. The total number of valence electrons should be 
correct when you are fnished. In this example, there was one carbon atom, two hydrogen 
atoms, and one oxygen atom, giving a total of 12 valence electrons (4 + 2 + 6). The drawing 
above MUST have 12 valence electrons, no more and no less.

1.8  Draw a Lewis structure for each of the following compounds:

(a)  C2H6    (b)  C2H4    (c)  C2H2    (d)  C3H8    (e)  C3H6    (f )  CH3OH

1.9  Borane (BH3) is very unstable and quite reactive. Draw a Lewis structure of borane and 
explain the source of the instability.

1.10  There are four constitutional isomers with the molecular formula C3H9N. Draw a Lewis 
structure for each isomer and determine the number of lone pairs on the nitrogen atom in 
each case.

1.11  Smoking tobacco with a water pipe, or hookah, is often perceived as being less 
dangerous than smoking cigarettes, but hookah smoke has been found to contain the same 

STEP 1
Draw all individual 

atoms.

STEP 2
Connect atoms that 
form more than one 

bond.

STEP 3
Connect the 

hydrogen atoms.

STEP 4
Pair any unpaired 

electrons so that each 
atom achieves an 

octet.

Tis observation, called the octet rule, explains why carbon is tetravalent. As just shown, it can 
achieve an octet of electrons by using each of its four valence electrons to form a bond. Te octet 
rule also explains why nitrogen is trivalent. Specifcally, it has fve 
valence electrons and requires three bonds in order to achieve an 
octet of electrons. Notice that the nitrogen atom contains one pair 
of unshared, or nonbonding, electrons, called a lone pair.

In the next chapter, we will discuss the octet rule in more detail; in particular, we will explore when 
it can be violated and when it cannot be violated. For now, let’s practice drawing Lewis structures.

N HH

H

NH H
H

PractIce the skill

ApplY the skill

SKILLBUILDER

LEARN the skill

1.3  DRAWING THE LEWIS STRUCTURE OF A SMALL MOLECULE



8      CHAPTER  1      A Review of General Chemistry 

variety of toxins and carcinogens (cancer-causing compounds) as cigarette smoke.3 Draw a 
Lewis structure for each of the following dangerous compounds found in tobacco smoke:

(a) HCN (hydrogen cyanide)	 (b) CH2CHCHCH2 (1,3-butadiene)

Try Problem 1.39

SKILLBUILDER

LEARN the skill

1.4  CALCULATING FORMAL CHARGE

Consider the nitrogen atom in the structure below and determine if it has a formal charge:

N

H

H

H H

SOlUtIOn
We begin by determining the appropriate number of valence electrons for a nitrogen atom. 
Nitrogen is in group 5A of the periodic table, and it should therefore have fve valence 
electrons.

Next, we count how many valence electrons are exhibited by the nitrogen atom in this par‑
ticular example.

N H

H

H

H

STEP 1
Determine the 

appropriate number 
of valence electrons.

STEP 2
Determine the actual 

number of valence 
electrons in this case.

need more PRACTICE?

1.4  Identifying Formal Charges

A formal charge is associated with any atom that does not exhibit the appropriate number of valence 
electrons. When such an atom is present in a Lewis structure, the formal charge must be drawn. 
Identifying a formal charge requires two discrete tasks:

	1.	 Determine the appropriate number of valence electrons for an atom.
	2.	 Determine whether the atom exhibits the appropriate number of electrons.

Te frst task can be accomplished by inspecting the periodic table. As mentioned earlier, the 
group number indicates the appropriate number of valence electrons for each atom. For example, 
carbon is in group 4A and therefore has four valence electrons. Oxygen is in group 6A and has six 
valence electrons.

After identifying the appropriate number of electrons for each atom in a Lewis struc-
ture, the next task is to determine if any of the atoms exhibit an unexpected number of 
electrons. For example, consider the following structure.

Each line represents two shared electrons (a bond). For our purposes, we must split each 
bond apart equally, and then count the number of electrons on each atom.

Each hydrogen atom has one valence electron, as expected. Te carbon atom also has 
the appropriate number of valence electrons (four), but the oxygen atom does not. Te 
oxygen atom in this structure exhibits seven valence electrons, but it should only have six. 
In this case, the oxygen atom has one extra electron, and it must therefore bear a negative 
formal charge, which is indicated like this.

O

H HC

H

C HH

H

O

C

H

O

H H

⊝
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In this case, the nitrogen atom exhibits only four valence electrons. It is missing one electron, 
so it must bear a positive charge, which is shown like this:

NH H

H

H
⊕

1.12  Identify any formal charges in the structures below:

1.13  Draw a structure for each of the following ions; in each case, indicate which atom 
possesses the formal charge:
(a)  BH4

−        (b)  NH2
−        (c)  C2H5

+

1.14  If you are having trouble paying attention during a long 
lecture, your levels of acetylcholine (a neurotransmitter) may 
be to blame.4 Identify any formal charges in acetylcholine.

Try Problem 1.41 Acetylcholine

C C

H

H

H

O

O C

H

H

C

H

H

N C

C

C

H H H

H

H

H

H H H

PractIce the skill

ApplY the skill

need more PRACTICE?

1.5  Induction and Polar Covalent Bonds

Chemists classify bonds into three categories: (1) covalent, (2) polar covalent, and (3) ionic. Tese 
categories emerge from the electronegativity values of the atoms sharing a bond. Electronegativity is 
a measure of the ability of an atom to attract electrons. Table 1.1 gives the electronegativity values for 
elements commonly encountered in organic chemistry.

STEP 3
Assign a formal 

charge.

H HC

H(f )

H C C

H

H

O

(g)

AlCl Cl

Cl

Cl

Cl

(h)

C C

H

H

H N

H

H O

O

(i)

AlH H

H

H

(a)
O

H H

H

(b)

H N

H

C

H

H

H

C

H

(c) H H

H

C

O

(d)

H HC

H(e)

When two atoms form a bond, one critical consideration allows us to classify the bond: 
What is the diference in the electronegativity values of the two atoms? Below are some rough 
guidelines:

If the diference in electronegativity is less than 0.5, the electrons are considered to be 
equally shared between the two atoms, resulting in a covalent bond. Examples include C−C and 
C−H:

CC HC

TABLE 1.1 ELECTRONEGATIVITY VALUES OF SOME COMMON ELEMENTS

H
2.1

Li
1.0

Be
1.5

B
2.0

C
2.5

N
3.0

O
3.5

F
4.0

K
0.8

Br
2.8

Na
0.9

Mg
1.2

Al
1.5

Si
1.8

P
2.1

S
2.5

Cl
3.0

Increasing
electronegativity

Increasing electronegativity
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Te C−C bond is clearly covalent, because there is no diference in electronegativity between the 
two atoms forming the bond. Even a C−H bond is considered to be covalent, because the diference 
in electronegativity between C and H is less than 0.5.

If the diference in electronegativity is between 0.5 and 1.7, the electrons are not shared equally 
between the atoms, resulting in a polar covalent bond. For example, consider a bond between car-
bon and oxygen (C−O). Oxygen is signifcantly more electronegative (3.5) than carbon (2.5), and 
therefore oxygen will more strongly attract the electrons of the bond. Te withdrawal of electrons 
toward oxygen is called induction, which is often indicated with an arrow like this.

C O

Induction causes the formation of partial positive and partial negative charges, symbolized by 
the Greek symbol delta (δ). Te partial charges that result from induction will be very important in 
upcoming chapters.

C O
δ–δ+

If the diference in electronegativity is greater than 1.7, the electrons are not shared at all. For 
example, consider the bond between sodium and oxygen in sodium hydroxide (NaOH).

ONa H
⊝⊕

Te diference in electronegativity between O and Na is so great that both electrons of the bond are 
possessed solely by the oxygen atom, rendering the oxygen negatively charged and the sodium posi-
tively charged. Te bond between oxygen and sodium, called an ionic bond, is the result of the force 
of attraction between the two oppositely charged ions.

Te cutof numbers (0.5 and 1.7) should be thought of as rough guidelines. Rather than viewing 
them as absolute, we must view the various types of bonds as belonging to a spectrum without clear 
cutofs (Figure 1.4). 

C C Li CC H N H C O

Covalent Polar covalent Ionic

Li N

Small difference
in electronegativity

Large difference
in electronegativity

NaClFIGUre 1.4
The nature of various bonds 
commonly encountered 
in organic chemistry.

Tis spectrum has two extremes: covalent bonds on the left and ionic bonds on the right. Between 
these two extremes are the polar covalent bonds. Some bonds ft clearly into one category, such as 
C−C bonds (covalent), C−O bonds (polar covalent), or NaCl bonds (ionic). However, there are 
many cases that are not so clear-cut. For example, a C−Li bond has a diference in electronegativity 
of 1.5, and this bond is often drawn either as polar covalent or as ionic. Both drawings are acceptable:

Li LiC or C
⊝ ⊕

Another reason to avoid absolute cutof numbers when comparing electronegativity values is that 
the electronegativity values shown above are obtained via one particular method developed by Linus 
Pauling. However, there are at least seven other methods for calculating electronegativity values, each of 
which provides slightly diferent values. Strict adherence to the Pauling scale would suggest that C−Br 
and C−I bonds are covalent, but these bonds will be treated as polar covalent throughout this course.

SKILLBUILDER

LEARN the skill

1.5  LOCATING PARTIAL CHARGES RESULTING FROM INDUCTION

Consider the structure of methanol. Identify all polar covalent bonds  
and show any partial charges that result from inductive effects:

OH

H

HC

H

Methanol




